b2c信息网

您现在的位置是:首页 > 最近新闻 > 正文

最近新闻

综合运用各导航数据(导航数据集)

hacker2022-07-18 16:48:42最近新闻198
本文目录一览:1、组合导航技术2、北斗卫星导航系统军事上有什么用

本文目录一览:

组合导航技术

组合导航技术

重点领域: 航空电子与武器技术

技术方向: 导航技术

研究内容: 组合导航技术

技术内涵概述:

将两种或两种以上导航系统以适当方式组合为一种导航系统,以达到提高系统精度和改善系统可靠性等目的,这种系统被称为组合(或综合)导航系统。惯性导航系统由于其工作的完全自主性、以及所提供信息的多样性(位置、速度及姿态),已成为当前各种航行体上应用的一种主要导航设备;并且,在现已得到应用的机载组合导航系统中,绝大部分为惯性为基的组合系统,其中惯性与GPS两者组合的导航系统是组合导航技术发展的一个重要方向。

组合系统的优点可归纳如下:

1、能有效利用各子系统的导航信息,提高组合系统定位精度;

2、允许在子系统工作模式间进行自动转换,从而进一步提高系统工作可靠性;

3、可实现对各子系统及其元件的校准,从而放宽了对子系统技术指标的要求;

4、允许惯导系统进行空中对准和调整,有利于缩短惯导系统的地面对准时间。

目前技术水平(包括与国内外水平对比):

惯性导航的基本工作原理是以牛顿力学定律为基础的,即在载体内部测量载体运动加速度,经积分运算后得到载体的速度和位置等导航信息。惯性导航是一种完全自主的导航方法,其主要缺点是导航定位误差随时间增长,因而难以长时间独立工作。解决这一问题的途径有两个:一是提高惯导系统本身的精度,一是采用组合导航技术。而实践证明,主要通过软件技术来提高导航精度的组合导航,是一种行之有效的方法。目前在飞机上的通常作法是,在一种中等精度惯导仪基础上,通过卡尔曼滤波器结合进一个或多个辅助传感器,这些传感器将为惯导提供有界信息,从而最终构成一种对短期和长期稳定性以及系统精度都是最佳的组合系统。

军民用前景分析:

自80年代始,组合导航系统日益扩展其应用,尤其受到航空界的重视。在军用方面,美国和北约国家的军用飞机大量装备的是以惯性为基的组合导航系统,其中GPS与惯性的组合更是占有特殊重要的地位。至2004年,一种称为“嵌入GPS接收机的惯导系统”的装置(即EGI)将完全取代单独的机上GPS接收机,而成为美国和北约军用飞机的主要导航设备。另外,在战术导弹上,这些国家也不允许用GPS作为其唯一制导装置。俄罗斯由于其飞机上的传感器或单项装置普遍来说性能不高,所以特别强调对系统综合能力的研究。通过综合利用现有传感器的信息以构成组合导航系统,这是俄罗斯在现役军用机上广泛采用的一种作法。

定义与概念:

将两种或两种以上导航系统以适当方式组合为一种导航系统,以达到提高系统精度和改善系统可靠性等目的,这种系统被称为组合(或综合)导航系统。至于哪些导航系统可相互结合成为组合导航系统,一般是没有什么限制的。但惯性导航系统由于其工作的完全自主性、以及所提供信息的多样性(位置、速度及姿态),已成为当前各种航行体上应用的一种主要导航设备;并且,在现已得到应用的机载组合导航系统中,绝大部分为惯性为基的组合系统,其中惯性与GPS两者组合的导航系统是组合导航技术发展的一个重要方向。

国外概况:

有三个重要前提推动了组合导航的发展:首先,远程/长航时以及武器投放、侦察/反潜以及变轨控制等任务对导航系统提出了更高的要求;第二,现代控制理论的兴起和发展,特别是卡尔曼滤波技术的出现,为组合导航提供了理论基础和数学工具;第三,数字计算机的蓬勃发展为应用卡尔曼滤波方法解决组合导航问题提供了现实可行的条件。

在以惯性为基的机载组合导航系统中,可提供组合的典型传感器有:GPS(或以后的Glonass)、多普勒、罗兰、星体跟踪器、数字地图、雷达高度表、大气数据计算机、合成孔径雷达(SAR)和光电传感器等。

组合系统的优点可归纳如下:

1、能有效利用各子系统的导航信息,提高组合系统定位精度;

2、允许在子系统工作模式间进行自动转换,从而进一步提高系统工作可靠性;

3、可实现对各子系统及其元件的校准,从而放宽了对子系统技术指标的要求;

4、允许惯导系统进行空中对准和调整,有利于缩短惯导系统的地面对准时间。

早期飞机主要靠目视导航。20世纪20年代开始发展仪表导航,30年代出现无线电导航,40年代开始研制超短波的伏尔(VOR)导航系统,50年代惯性导航进入飞机应用,50年代末多普勒导航问世,60年代开始使用远程无线电罗兰C导航系统,60年代中"子午仪"卫星导航正式投入使用,70年代联合战术信息分发系统(JTIDS)得到研制,80年代初出现地形辅助导航,80年代末GPS全球定位系统逐渐进入航空领域。与此同时,从80年代初以来至今,发挥不同导航系统特点的组合导航逐渐得到应用且发展迅速。另外,在30年代无线电导航技术问世之前,天文导航是各种航行体主要(甚至是唯一)的导航手段;但直到今天,无文导航仍在使用,且多以与其它导航相结合的形式出现。

下面简介几种主要导航系统,以及它们与惯性系统组合的情况。

1、VOR/DME 近距无线电导航

VOR和DME是两种近距无线电测量系统。VOR为甚高频全向信标系统,测量飞机磁方位角;DME为测距系统,测量飞机与地面DME台间的斜距。DME作用距离为300~500公里,最远700公里,测距误差为0.1~0.4海里。VOR/DME组成近距无线电导航系统,在其信号覆盖区内还可与惯导组合,以提高飞机区域导航或进场着陆前所需导航信息的精度。

2、多普勒导航

其工作原理是,用多普勒雷达测量航行体相对地球的速度(地速)和偏流角,再从航向系统引入航向信息,然后通过积分运算,最后得到航行体的位置信息。多普勒导航与惯性导航一样,都是一种航位推算定位系统。而多普勒/惯性是一种速度综合模式,它只能减小位置误差随时间增长的速度值,不能改变位置误差随时间增长的基本特性(如惯性系统),这是速度综合导航系统的主要不足之处。

3、远程无线电导航系统

主要指罗兰-C双曲线无线电导航和奥米伽甚低频远距无线电导航。罗兰-C作用距离为1200海里,定位精度为0.25海里(460米)(2维、均方根)。奥米伽导航靠8个地面台实现全球覆盖,定位精度为1~2海里(1.85~3.7公里)(2维、均方根)。当罗兰工作于测距方式时,罗兰/惯性组合是一种类似于GPS/惯性的伪距综合模式,它可消除惯导位置误差随时间增长的性质,使组合后的位置误差变为有界,因而更适于长时间工作航行体的应用。

4、地形辅助导航(TA)

用无线电高度表和数字地图来辅助惯性导航的技术称为地形辅助惯性导航,简称为地形辅助导航(TAN)或地形基准导航(TRN),通俗称为地形匹配。该技术可用来实现精确导航,精度取决于地图精度和地形变化情况,通常为几十米至100米。但TA基本上是一种低高度系统,在300米以上高度时系统精度降低,800~1500米高度时系统无法使用。另外,TAN/惯性/GPS是现代军用飞机常用的一种组合方案。

5、天文导航

天文导航是一种根据天体的精确坐标位置及其已知运动规律,测量天体相对于航行体参考基准面的高度角,从而计算出航行体位置与航向的导航方法。天文导航是一种古老而又崭新的导航技术,又是一种高精度自主式导航手段。当与惯性系统组合时,它可产生一个极其精确的导航解;而且星体的方位和高度数据还可用来向惯性系统提供调平信息。这种组合系统适合于高空远程飞机和要求具有隐身作战能力的战略轰炸机应用。

6、相对导航

JTIDS是把通信、导航和识别综合在一起的一种三军共用的战术多功能综合电子系统,其用户终端分为三类:I类终端供大型飞机(如预警机)和大型舰艇使用,现已装备部队;II类终端供战斗机和一般舰艇使用,已小批投产;III类终端供陆军小分队使用,尚在研制中。JTIDS有一个高精度的导航功能,被称为相对导航,通过测量信号到达时间来测量伪距,最终向用户提供位置、速度和时间信息。由于该系统具有高精度(20纳秒)统一时序,利用多边测距和卡尔曼滤波技术,可实现高精度、多维导航,精度为几十~100米。但由于其导航算法通常适于低动态用户,对高动态尤其是高机动用户,导航算法会产生较大滞后误差。为克服这一缺点,通常将其与惯导相组合,以便在JTIDS丢失信号或坏的测量几何情况下,依靠惯导的航位推算来保持导航精度。

7、GPS全球定位系统

GPS是一种以空间为基的卫星导航系统,在引入"伪距"和"伪距率"概念后,用户接收机只要能同时接收来自空中4颗卫星的信号,就能精确解算出自身所处的三维地理坐标。根据美国政策,GPS可提供两种精度等级的服务:采用商业码(C/A码)的定位精度为100米,军用码(P码)的为16米。虽然GPS具有其它导航设备无法比拟的优点(如极精确的三维位置、速度和时间数据,无源、全球、全天候工作等),但其本质是一种无线电导航系统。在未来战场的电子战环境下,干扰信号将严重影响GPS的工作有效性。为此,美国防部于1996年提出了以GPS为核心的"导航战"思想;并明确,GPS与惯性相组合的方案是干扰环境下一项重要的抗干扰战术。

8、惯性导航系统

惯性导航的基本工作原理是以牛顿力学定律为基础的,即在载体内部测量载体运动加速度,经积分运算后得到载体的速度和位置等导航信息。惯性导航是一种完全自主的导航方法,其主要缺点是导航定位误差随时间增长,因而难以长时间独立工作。解决这一问题的途径有两个:一是提高惯导系统本身的精度,一是采用组合导航技术。而实践证明,主要通过软件技术来提高导航精度的组合导航,是一种行之有效的方法。目前在飞机上的通常作法是,在一种中等精度惯导仪基础上,通过卡尔曼滤波器结合进一个或多个辅助传感器,这些传感器将为惯导提供有界信息,从而最终构成一种对短期和长期稳定性以及系统精度都是最佳的组合系统。

关键技术:

1、将多种系统集成在一起,以构成广义组合能力的数据融合技术;

2、以惯性为基组合导航系统识别欺骗性干扰和抗干扰的技术;

3、将GPS载波相位引入惯性组合系统的技术;

4、利用分散估计理论或联邦滤波器/多模态滤波器进行组合的技术;

5、组合导航系统中惯性系统空中快速对准技术;

6、卡尔曼滤波器的工程化应用,以及有关组合系统可靠性、多维余度、容错能力等的理论与方法的研究。

应用与影响:

自80年代始,组合导航系统日益扩展其应用,尤其受到航空界的重视。在军用方面,美国和北约国家的军用飞机大量装备的是以惯性为基的组合导航系统,其中GPS与惯性的组合更是占有特殊重要的地位。至2004年,一种称为"嵌入GPS接收机的惯导系统"的装置(即EGI)将完全取代单独的机上GPS接收机,而成为美国和北约军用飞机的主要导航设备。另外,在战术导弹上,这些国家也不允许用GPS作为其唯一制导装置。俄罗斯由于其飞机上的传感器或单项装置普遍来说性能不高,所以特别强调对系统综合能力的研究。通过综合利用现有传感器的信息以构成组合导航系统,这是俄罗斯在现役军用机上广泛采用的一种作法。

北斗卫星导航系统军事上有什么用

北斗卫星导航是中国国家安全、经济和社会发展不可或缺的重大空间信息基础设施。中国拥有了自己的导航卫星系统也将彻底摒弃依赖美国的GPS,而重要的是,中国成为世界上拥有自己真正独立国防军事系统。

北斗卫星导航作战应用效能,构建了多源信息融合、组网扁平化指挥、多平台集成应用、分级管理保障的北斗应用体系,综合运用精确定位导航、统一时空基准、实时位置报告、远程信息传输、战场态势共享等功能,实现了部队的科学决策指挥、快速机动展开、实时高效协同、精确火力打击、精准后装保障,为全军部队北斗作战应用提供了模式和技术借鉴。

扩展资料:

北斗卫星导航系统的建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。

按照“三步走”的发展战略,北斗卫星导航系统将于2012年前具备亚太地区区域服务能力,2020年左右建成由30余颗卫星、地面段和各类用户终端构成的、覆盖全球的大型航天系统。

参考资料来源:人民网-解放军举行北斗卫星导航作战演练

参考资料来源:人民网-中国为何要建北斗卫星导航系统?

北斗卫星导航系统的功能与特色

.1 北斗卫星导航系统服务方式和精度

北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括开放服务和授权服务两种方式。开放服务是向全球免费提供定位、测速和授时服务,定位精度10m,测速精度0.2m/s.授时精度10ns。授权服务是为有高精度、高可靠卫星导航需求的用户,提供定位、测速、授时和通信服务以及系统完好性信息。在导航精度上不逊于欧美之外,北斗卫星导航系统还解决了何人、何事、何地的问题,这就是北斗的特色服务,靠北斗一个终端你就可以走遍天下。

2.北斗卫星导航系统与其他定位导航系统的区别与优势

北斗导航终端与GPS、GALILEO和GLONASS相比,优势在于短信服务和导航结合,增加了通讯功能;全天候快速定位,极少的通信盲区,精度与GPS相当,而在增强区域也就是亚太地区,甚至会超过GPS:在提供无源定位导航和授时等服务时,用户数量没有限制,且与GPS兼容;特别适合集团用户大范围监控与管理,以及无依托地区数据采集用户数据传输应用:独特的中心结点式定位处理和指挥型用户机设计,可同时解决“我在哪?”和“你在哪?”;自主系统,高强度加密设计,安全、可靠、稳定,适合关键部门应用。

3.卫星导航系统发展历史

卫星导航系统是重要的空间信息基础设施,中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗卫星导航试验系统(图2-2).使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。

图2-2 北斗卫星导航试验系统示意图

该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。

4.卫星导航系统建设原则

北斗卫星导航系统的建设与发展,以应用推广和产业发展为根本目标,不仅要建成系统,更要用好系统,强调质量、安全、应用、效益,遵循以下建设原则:

1)开放性:北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。

2)自主性:中国将自主建设和运行北斗卫星导航系统,北斗卫星导航系统可独立为全球用户提供服务。

3)兼容性:在全球卫星导航系统国际委员会(ICG)和国际电联(ITU)框架下,使北斗卫星导航系统与世界各卫星导航系统实现兼容与互操作,使所有用户都能享受到卫星导航发展的成果。

4)渐进性:中国将积极稳妥地推进北斗卫星导航系统的建设与发展,不断完善服务质量,并实现各阶段的无缝衔接。

5.建设计划

从古至今,人类在生产和生活实践中发明了多种导航方法。例如,天文导航是通过观测天体的位置来确定自身的位置和航向,此法设备简单,但受到气象条件的限制:无线电导航是接收海岸电台发出的无线电波来确定舰船自身的位置,它虽不受气象条件的影响,但由于无线电波的传播距离有限,故用于远航时有困难:其他导航方法也不尽如人意。从目前的技术水平和可以预见的将来看,卫星导航技术是一种比较理想的导航工具。卫星导航技术是指利用一组导航卫星,对地面、海洋和空间全用户进行精确的定位。它具有全时空、全天候、高精度、连续实时地提供导航、定位和授时的特点,已成为应用广泛的导航定位技术。卫星导航定位系统是重要的空间基础设施,可提供高精度的定位、测速和授时服务,能带来巨大的社会和经济效益。我国高度重视卫星导航系统的建设,一直努力探索和发展拥有自主知识产权的卫星导航系统。早在20世纪60年代末,我国就开展了卫星导航系统的研制工作,但由于诸多原因而夭折。自20世纪70年代后期以来,国内开展了探讨适合国情的卫星导航系统的体制研究,先后提出过单星、双星、三星和3~5星的区域性系统方案,以及多星的全球系统的设想,并考虑到导航定位与通信等综合运用问题,但是由于种种原因,这些方案和设想都没能得以实现。在20世纪80年代到90年代,我国就结合国情,科学、合理地提出并制订自主研制实施“北斗”卫星导航系统建设的“三步走”规划:第一步是试验阶段,即用少量卫星利用地球同步静止轨道来完成试验任务,为“北斗”卫星导航系统建设积累技术经验、培养人才,研制一些地面应用基础设施设备等;第二步是到2012年,计划发射10多颗卫星,建成覆盖亚太区域的“北斗”卫星导航定位系统(即“北斗二号”区域系统);第三步是到2020年.建成由5颗地球静止轨道和30颗地球非静止轨道卫星组网而成的全球卫星导航系统。

6.建设目标

中国作为发展中国家,拥有广阔的领土和海域,高度重视卫星导航系统的建设,努力探索和发展拥有自主知识产权的卫星导航定位系统。

2000年以来,中国已成功发射了4颗“北斗导航试验卫星”,建成北斗导航试验系统(第一代系统)。这个系统具备在中国及其周边地区范围内的定位、授时、报文和GPS广域差分功能,并已在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域逐步发挥着重要作用。

中国正在建设的北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供两种服务方式,即开放服务和授权服务(属于第二代系统)。开放服务是在服务区免费提供定位、测速和授时服务,定位精度为10m,授时精度为50ns,测速精度为0.2m/s。授权服务是向授权用户提供更安全的定位、测速、授时和通信服务以及系统完好性信息。

中国计划2012年左右,让“北斗”系统覆盖亚太地区,2020年左右覆盖全球。我国正在实施北斗卫星导航系统建设,已成功发射16颗北斗导航卫星。根据系统建设总体规划,2012年左右,系统将首先具备覆盖亚太地区的定位、导航和授时以及短报文通信服务能力。2020年左右,建成覆盖全球的北斗卫星导航系统。

 导航定位系统

早期的大洋多金属结核调查的导航定位工作采用罗兰C式导航系统。随着科学技术的不断发展,卫星导航取代了上述系统。TRANSIT卫星综合导航系统曾经一度是各国进行大洋调查中定位的主要手段。

3.3.1 TRANSIT导航定位系统

TRANSIT子午仪导航定位系统计有5枚同时操作的卫星,运行于地表上方1000km的圆形极轨道。轨道周期为107min。前后两枚卫星信号地平均间隔时间在赤道地区约为90min,南北纬45°地带间隔时间约为60min,卫星传达利用150MHz和400MHz两个频道带。这种系统操作较之先前的定位精确,而且不受气候的影响,可以全天24小时连续作业;工作方法是首先确定探测的起点和终点,其次为每隔30min确定一次船只的位置及其转向点,确定取样位置,包括投放和回收无缆地质取样器的地点以及有缆地质取样器投放位置、海底接触位置和回收地点。

TRANSIT号人造卫星在轨道上每107min绕地球一次,高度为600n mile,绕行轨道为呈橘子图像的剖面——赤道部分宽,向两极部分收缩。这些人造卫星在南北极之间环绕地球,但它们的轨道不随地球旋转。因此,六个轨道就似一个静止的球形鸟笼,地球则在笼内绕轴自转。因而,地球表面每一点大约一天有两次处于这六个轨道之下。每个人造卫星连续不断地以时间函数广播其位置,只要测出人造卫星飞越船顶时所收到的讯号的多普勒频率率化,就可以非常精确地定出船只相对人造卫星航线的位置。使用这一系统进行卫星定位的精确度在30m以内。船只的速度误差可以造成其它误差。经过两小时后的累积计算定位误差在大多数海上条件下仍可以使位置精确度在2000m以内。这个系统现已被全球定位系统〔GPS)所替代,后者的定位精度更为精确。

3.3.2 全球定位系统

全球定位系统是一个连续性的全球导航和定位系统。它为陆地、海上和空中的应用提供精确的三维定位导航。全球定位系统的生产卫星均匀地散开分布在六个轨道平面上。从一个卫星讯号中解译的导航数据包含了精确的卫星轨道数据、系统时间、卫星时钟性能数据和各种状况信息。实际上,卫星轨道数据的一个完全的导航信息中共有两项:①对发送卫星备有精确的轨道参数(天体位置推算表);②对其它可能的卫星则备有较不精确的数据(天文年鉴)。使用者位置的确定是利用“天体位置推算表”,计算接收到的每一个卫星发送的讯号当时使用者的位置来完成的。确定讯号到达使用者的时间的精确度不超出有关各时钟偏差范围。方法是利用卫星所发出的C/A信号码来校准接收机。反传播时间迟延和时钟误差之和根据炮速度加以比例换算以用于计算伪范围。由于大洋多金属结核远离陆地、岛屿,不能使用差分全球定位系统,所以目前使用的全球定位系统其导航定位误差为35m,概率90%。

若要在较小的区域内进行详测,则采用一个长基线声学导航系统。这个系统先要投放一系列声学应答器,在对它们所构成的定位场进行校准后就可以用于测定船只或任何其它配有声学应答器的装置的位置,其误差往往不超过10m。

地质矿产部海洋四号船在东太平洋海域进行多金属结核矿产资源调查中,曾先后采用过MX5000型综合卫星导航系统和ISAH-GPS系统(加拿大Quester Tangent公司生产)进行卫星导航、定位。后者包括有全球定位系统(美国Ashtech公司生产)、多路接口系统及其外围设备。如上所述,全球定位系统的特点是卫星多,能连续实时导航定位,操作简便,功能与精度明显高于子午仪系统。ISAH-GPS系统的多路接口的功能是将调查仪器与GPS联机工作。在地震测量工作中,由GPS系统控制并触发地震放炮,提供位标记并将前述调查资料与导航定位资料一并显示、打印和记带。

对GPS系统进行了3次稳定性试验。结果表明,其离散半径r均小于40m。在3r半径下保证了99%的定位精度(即99%的抽样点在3r半径内),当航速为v,定位时间间隔为t时,则动态定位精度优于3r+vt。若航速小于15km/h,定位取样间隔为2s,定位精度均优于3×40+4.2×2<130m。若航速<28km/h,取样间隔时间为2s,其定位精度优于3×40+7.8×2<140m。这些试验结果表明,运用全球定位系统进行大洋多金属结核调查可以保证获得足够的定位精度。

现在做的北斗卫星导航系统主要应用在哪些领域?

北斗全称是北斗卫星导航系统,Beidou Navigation Satellitesystem,缩写BDS。北斗作为我国自有的全球卫星导航系统,在国内基本分为三大应用领域:大众应用、行业应用以及特殊应用。

大众应用和行业应用就是通俗所说的北斗民用。大众应用就是指汽车导航、车辆信息服务、跟踪监控、紧急救援、移动位置服务等;行业应用一般是电力、水利等的网路系统中心、应用中心、数据服务中心等。特殊应用即军工类应用,不属于民用范畴。

而普通群众接触最多应该就是汽车导航,现在的汽车导航还基本是运用GPS进行定位的,GPS+BDS双模定位也逐步开始运用,众多国内导航厂商都已经推出相关产品,例如凯立德的北斗导航仪等等。

在行业应用中的了解并不多,但都处于试行状态,像电力系统的授时中心系统等,还有渔业定位系统等。

发表评论

评论列表

  • 澄萌雾敛(2022-07-19 03:13:15)回复取消回复

    经推出相关产品,例如凯立德的北斗导航仪等等。在行业应用中的了解并不多,但都处于试行状态,像电力系统的授时中心系统等,还有渔业定位系统等。